C++ Programming Language
Table of content:
- A Brief Intro To C++
- The Timeline Of C++
- Importance Of C++
- Versions Of C++ Language
- Comparison With Other Popular Programming Languages
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Are Variables In C++?
- Declaration & Definition Of Variables In C++
- Variable Initialization In C++
- Rules & Regulations For Naming Variables In C++ Language
- Different Types Of Variables In C++
- Different Types of Variable Initialization In C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Are Primitive Data Types In C++?
- Derived Data Types In C++
- User-Defined Data Types In C++
- Abstract Data Types In C++
- Data Type Modifiers In C++
- Declaring Variables With Auto Keyword
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- Structure Of C++ Program: Components
- Compilation & Execution Of C++ Programs | Step-by-Step Explanation
- Structure Of C++ Program With Example
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What is Typedef in C++?
- The Role & Applications of Typedef in C++
- Basic Syntax for typedef in C++
- How Does typedef Work in C++?
- How to Use Typedef in C++ With Examples? (Multiple Data Types)
- The Difference Between #define & Typedef in C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Are Strings In C++?
- Types Of Strings In C++
- How To Declare & Initialize C-Style Strings In C++ Programs?
- How To Declare & Initialize Strings In C++ Using String Keyword?
- List Of String Functions In C++
- Operations On Strings Using String Functions In C++
- Concatenation Of Strings In C++
- How To Convert Int To Strings In C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is String Concatenation In C++?
- How To Concatenate Two Strings In C++ Using The ‘+' Operator?
- String Concatenation Using The strcat( ) Function
- Concatenation Of Two Strings In C++ Using Loops
- String Concatenation Using The append() Function
- C++ String Concatenation Using The Inheritance Of Class
- Concatenate Two Strings In C++ With The Friend and strcat() Functions
- Why Do We Need To Concatenate Two Strings?
- How To Reverse Concatenation Of Strings In C++?
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is Find In String C++?
- What Is A Substring?
- How To Find A Substring In A String In C++?
- How To Find A Character In String C++?
- Find All Substrings From A Given String In C++
- Index Substring In String In C++ From A Specific Start To A Specific Length
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Are Pointers In C++?
- Pointer Declaration In C++
- How To Initialize And Use Pointers In C++?
- Different Types Of Pointers In C++
- References & Pointers In C++
- Arrays And Pointers In C++
- String Literals & Pointers In C++
- Pointers To Pointers In C++ (Double Pointers)
- Arithmetic Operation On Pointers In C++
- Advantages Of Pointers In C++
- Some Common Mistakes To Avoid With Pointers In Cpp
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- Understanding Pointers In C++
- What Is Pointer To Object In C++?
- Declaration And Use Of Object Pointers In C++
- Advantages Of Pointer To Object In C++
- Pointer To Objects In C++ With Arrow Operator
- An Array Of Objects Using Pointers In C++
- Base Class Pointer For Derived Class Object In C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is 'This' Pointer In C++?
- Defining ‘this’ Pointer In C++
- Example Of 'this' Pointer In C++
- Describing The Constness Of 'this' Pointer In C++
- Important Uses Of 'this' Pointer In C++
- Method Chaining Using 'this' Pointer In C++
- C++ Programs To Show Application Of 'This' Pointer
- How To Delete The ‘this’ Pointer In C++?
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What is Reference?
- What is Pointer?
- Comparison Table Of C++ Pointer Vs. Reference
- Differences Between Reference And Pointer: A Detailed Explanation
- Why Are References Less Powerful Than Pointers?
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- How To Declare A 2D Array In C++?
- C++ Multi-Dimensional Arrays
- Ways To Initialize A 2D Array In C++
- Methods To Dynamically Allocate A 2D Array In C++
- Accessing/ Referencing Two-Dimensional Array Elements
- How To Initialize A Two-Dimensional Integer Array In C++?
- How To Initialize A Two-Dimensional Character Array?
- How To Enter Data In Two-Dimensional Array In C++?
- Conclusion
- Frequently Asked Questions
Table of content:
- What Are Arrays Of Strings In C++?
- Different Ways To Create String Arrays In C++
- How To Access The Elements Of A String Array In C++?
- How To Convert Char Array To String?
- Conclusion
- Frequently Asked Questions
Table of content:
- What is Memory Allocation in C++?
- The “new" Operator In C++
- The "delete" Operator In C++
- Dynamic Memory Allocation In C++ | Arrays
- Dynamic Memory Allocation In C++ | Objects
- Deallocation Of Dynamic Memory
- Dynamic Memory Allocation In C++ | Uses
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is A Substring In C++ (Substr C++)?
- Example For Substr In C++
- Points To Remember For Substr In C++
- Important Applications Of substr() Function
- How to Get a Substring Before a Character?
- Print All Substrings Of A Given String
- Print Sum Of All Substrings Of A String Representing A Number
- Print Minimum Value Of All Substrings Of A String Representing A Number
- Print Maximum Value Of All Substrings Of A String Representing A Number
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is Operator In C++?
- Types Of Operators In C++ With Examples
- What Are Arithmetic Operators In C++?
- What Are Assignment Operators In C++?
- What Are Relational Operators In C++?
- What Are Logical Operators In C++?
- What Are Bitwise Operators In C++?
- What Is Ternary/ Conditional Operator In C++?
- Miscellaneous Operators In C++
- Precedence & Associativity Of Operators In C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is The New Operator In C++?
- Example To Understand New Operator In C++
- The Grammar Elements Of The New Operator In C++
- Storage Space Allocation
- How Does The C++ New Operator Works?
- What Happens When Enough Memory In The Program Is Not Available?
- Initializing Objects Allocated With New Operator In C++
- Lifetime Of Objects Allocated With The New Operator In C++
- What Is The Delete Operator In C++?
- Difference Between New And Delete Operator In C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- Types Of Overloading In C++
- What Is Operator Overloading In C++?
- How To Overload An Operator In C++?
- Overloadable & Non-overloadable Operators In C++
- Unary Operator Overloading In C++
- Binary Operator Overloading In C++
- Special Operator Overloading In C++
- Rules For Operator Overloading In C++
- Advantages And Disadvantages Of Operator Overloading In C++
- Function Overloading In C++
- What Is the Difference Between Operator Functions and Normal Functions?
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Are Operators In C++?
- Introduction To Logical Operators In C++
- Types Of Logical Operators In C++ With Example Program
- Logical AND (&&) Operator In C++
- Logical NOT(!) Operator In C++
- Logical Operator Precedence And Associativity In C++
- Relation Between Conditional Statements And Logical Operators In C++
- C++ Relational Operators
- Conclusion
- Frequently Asked Important Interview Questions:
- Test Your Skills: Quiz Time
Table of content:
- Different Type Of C++ Bitwise Operators
- C++ Bitwise AND Operator
- C++ Bitwise OR Operator
- C++ Bitwise XOR Operator
- Bitwise Left Shift Operator In C++
- Bitwise Right Shift Operator In C++
- Bitwise NOT Operator
- What Is The Meaning Of Set Bit In C++?
- What Does Clear Bit Mean?
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- Types of Comments in C++
- Single Line Comment In C++
- Multi-Line Comment In C++
- How Do Compilers Process Comments In C++?
- C- Style Comments In C++
- How To Use Comment In C++ For Debugging Purposes?
- When To Use Comments While Writing Codes?
- Why Do We Use Comments In Codes?
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Are Storage Classes In Cpp?
- What Is The Scope Of Variables?
- What Are Lifetime And Visibility Of Variables In C++?
- Types of Storage Classes in C++
- Automatic Storage Class In C++
- Register Storage Class In C++
- Static Storage Class In C++
- External Storage Class In C++
- Mutable Storage Class In C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- Decision Making Statements In C++
- Types Of Conditional Statements In C++
- If-Else Statement In C++
- If-Else-If Ladder Statement In C++
- Nested If Statements In C++
- Alternatives To Conditional If-Else In C++
- Switch Case Statement In C++
- Jump Statements & If-Else In C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is A Switch Statement/ Switch Case In C++?
- Rules Of Switch Case In C++
- How Does Switch Case In C++ Work?
- The break Keyword In Switch Case C++
- The default Keyword In C++ Switch Case
- Switch Case Without Break And Default
- Advantages & Disadvantages of C++ Switch Case
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is A For Loop In C++?
- Syntax Of For Loop In C++
- How Does A For Loop In C++ Work?
- Examples Of For Loop Program In C++
- Ranged Based For Loop In C++
- Nested For Loop In C++
- Infinite For Loop In C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is A While Loop In C++?
- Parts Of The While Loop In C++
- C++ While Loop Program Example
- How Does A While Loop In C++ Work?
- What Is Pre-checking Process Or Entry-controlled Loop?
- When Are While Loops In C++ Useful?
- Example C++ While Loop Program
- What Are Nested While Loops In C++?
- Infinite While Loop In C++
- Alternatives To While Loop In C++
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Are Loops & Its Types In C++?
- What Is A Do-While Loop In C++?
- Do-While Loop Example In C++ To Print Numbers
- How Does A Do-While Loop In C++ Work?
- Various Components Of The Do-While Loop In C++
- Example 2: Adding User-Input Positive Numbers With Do-While Loop
- C++ Nested Do-While Loop
- C++ Infinitive Do-while Loop
- What is the Difference Between While Loop and Do While Loop in C++?
- When To Use A Do-While Loop?
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Are 2D Vectors In C++?
- How To Declare 2D Vector In C++?
- How To Initialize 2D Vector In C++?
- C++ Program Examples For 2D Vectors
- How To Access & Modify 2D Vector Elements In C++?
- Methods To Traverse, Manipulate & Print 2D Vectors In C++
- Adding Elements To 2-D Vector Using push_back() Function
- Removing Elements From Vector In C++ Using pop_back() Function
- Creating 2D Vector In C++ With User Input For Size Of Column & Row
- Advantages of 2D Vectors Over Traditional Arrays
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- How To Print A Vector In C++ By Overloading Left Shift (<<) Operator?
- How To Print Vector In C++ Using Range-Based For-Loop?
- Print Vector In C++ With Comma Separator
- Printing Vector In C++ Using Indices (Square Brackets/ Double Brackets & at() Function)
- How To Print A Vector In C++ Using std::copy?
- How To Print A Vector In C++ Using for_each() Function?
- Printing C++ Vector Using The Lambda Function
- How To Print Vector In C++ Using Iterators?
- Conclusion
- Frequently Asked Questions
Table of content:
- Definition Of C++ Find In Vector
- Using The std::find() Function
- How Does find() In Vector C++ Function Work?
- Finding An Element By Custom Comparator Using std::find_if() Function
- Use std::find_if() With std::distance()
- Element Find In Vector C++ Using For Loop
- Using The find_if_not Function
- Find Elements With The Linear Search Approach
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Sort() Function In C++?
- Sort() Function In C++ From Standard Template Library
- Exceptions Of Sort() Function/ Algorithm In C++
- The Stable Sort() Function In C++
- Partial Sort() Function In C++
- Sorting In Ascending Order With Sort() Function In C++
- Sorting In Descending Order With Sort Function In C++
- Sorting In Desired Order With Custom Comparator Function & Sort Function In C++
- Sorting Elements In Desired Order Using Lambda Expression & Sort Function In C++
- Types of Sorting Algorithms In C++
- Advanced Sorting Algorithms In C++
- How Does the Sort() Function Algorithm Work In C++?
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Function Overloading In C++?
- Ways Of Function Overloading In C++
- Function Overloading In C++ Using Different Types Of Parameters
- Function Overloading In C++ With Different Number Of Parameters
- Function Overloading In C++ Using Different Sequence Of Parameters
- How Does Function Overloading In C++ Work?
- Rules Of Function Overloading In C++
- Why Is Function Overloading Used?
- Types Of Function Overloading Based On Time Of Resolution
- Causes Of Function Overloading In C++
- Ambiguity & Function Overloading In C++
- Advantages Of Function Overloading In C++
- Disadvantages Of Function Overloading In C++
- Operator Overloading In C++
- Function Overriding In C++
- Difference Between Function Overriding & Function Overloading In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is An Inline Function In C++?
- How To Define The Inline Function In C++?
- How Does Inline Function In C++ Work?
- The Need For An Inline Function In C++
- Can The Compiler Ignore/ Reject Inline Function In C++ Programs?
- Normal Function Vs. Inline Function In C++
- Classes & Inline Function In C++
- Understanding Inline, __inline, And __forceinline Functions In C++
- When To Use An Inline Function In C++?
- Advantages Of Inline Function In C++
- Disadvantages Of Inline Function In C++
- Why Not Use Macros Instead Of An Inline Function In C++?
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is Static Data Member In C++?
- How To Declare Static Data Members In C++?
- How To Initialize/ Define Static Data Member In C++?
- Ways To Access A Static Data Member In C++
- What Are Static Member Functions In C++?
- Example Of Member Function & Static Data Member In C++
- Practical Applications Of Static Data Member In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is A Constant In C++?
- Ways To Define Constant In C++
- What Are Literals In C++?
- Pointer To A Constant In C++
- Constant Function Arguments In C++
- Constant Member Function Of Class In C++
- Constant Data Members In C++
- Object Constant In C++
- Conclusion
- Frequently Asked Questions(FAQ)
Table of content:
- What Is Friend Function In C++?
- Declaration Of Friend Function In C++ With Example
- Characteristics Of Friend Function In C++
- Global Friend Function In C++ (Global Function As Friend Function )
- Member Function Of Another Class As Friend Function In C++
- Function Overloading Using Friend Function In C++
- Advantages & Disadvantages Of Friend Function in C++
- What Is A C++ Friend Class?
- A Function Friendly To Multiple Classes
- C++ Friend Class Vs. Friend Function In C++
- Some Important Points About Friend Functions And Classes In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Function Overriding In C++?
- The Working Mechanism Of Function Overriding In C++
- Real-Life Example Of Function Overriding In C++
- Accessing Overriding Function In C++
- Accessing Overridden Function In C++
- Function Call Binding With Class Objects | Function Overriding In C++
- Function Call Binding With Base Class Pointers | Function Overriding In C++
- Advantages Of Function Overriding In C++
- Variations In Function Overriding In C++
- Function Overloading In C++
- Function Overloading Vs Function Overriding In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- Errors In C++
- What Is Exception Handling In C++?
- Exception Handling In C++ Program Example
- C++ Exception Handling: Basic Keywords
- The Need For C++ Exception Handling
- C++ Standard Exceptions
- C++ Exception Classes
- User-Defined Exceptions In C++
- Advantages & Disadvantages Of C++ Exception Handling
- Conclusion
- Frequently Asked Questions
Table of content:
- What Are Templates In C++ & How Do They Work?
- Types Of Templates In C++
- What Are Function Templates In C++?
- C++ Template Functions With Multiple Parameters
- C++ Template Function Overloading
- What Are Class Templates In C++?
- Defining A Class Member Outside C++ Template Class
- C++ Template Class With Multiple Parameters
- What Is C++ Template Specialization?
- How To Specify Default Arguments For Templates In C++?
- Advantages Of C++ Templates
- Disadvantages Of C++ Templates
- Difference Between Function Overloading And Templates In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- Structure
- Structure Declaration
- Initialization of Structure
- Copying and Comparing Structures
- Array of Structures
- Nested Structures
- Pointer to a Structure
- Structure as Function Argument
- Self Referential Structures
- Class
- Object Declaration
- Accessing Class Members
- Similarities between Structure and Class
- Which One Should You Choose?
- Key Difference Between a Structure and Class
- Summing Up
- Test Your Skills: Quiz Time
Table of content:
- What Is A Class And Object In C++?
- What Is An Object In C++?
- How To Create A Class & Object In C++? With Example
- Access Modifiers & Class/ Object In C++
- Member Functions Of A Class In C++
- How To Access Data Members And Member Functions?
- Significance Of Class & Object In C++
- What Are Constructors In C++ & Its Types?
- What Is A Destructor Of Class In C++?
- An Array Of Objects In C++
- Object In C++ As Function Arguments
- The this (->) Pointer & Classes In C++
- The Need For Semicolons At The End Of A Class In C++
- Difference Between Structure & Class In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Are Static Members In C++?
- Static Member Functions in C++
- Ways To Call Static Member Function In C++
- Properties Of Static Member Function In C++
- Need Of Static Member Functions In C++
- Regular Member Function Vs. Static Member Function In C++
- Limitations Of Static Member Functions In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Constructor In C++?
- Characteristics Of A Constructor In C++
- Types Of Constructors In C++
- Default Constructor In C++
- Parameterized Constructor In C++
- Copy Constructor In C++
- Dynamic Constructor In C++
- Benefits Of Using Constructor In C++
- How Does Constructor In C++ Differ From Normal Member Function?
- Constructor Overloading In C++
- Constructor For Array Of Objects In C++
- Constructor In C++ With Default Arguments
- Initializer List For Constructor In C++
- Dynamic Initialization Using Constructor In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is A Constructor In C++?
- What Is Constructor Overloading In C++?
- Dеclaration Of Constructor Ovеrloading In C++
- Condition For Constructor Overloading In C++
- How Constructor Ovеrloading In C++ Works?
- Examples Of Constructor Overloading In C++
- Lеgal & Illеgal Constructor Ovеrloading In C++
- Types Of Constructors In C++
- Characteristics Of Constructors In C++
- Advantage Of Constructor Overloading In C++
- Disadvantage Of Constructor Overloading In C++
- Conclusion
- Frеquеntly Askеd Quеstions
Table of content:
- What Is A Destructor In C++?
- Rules For Defining A Destructor In C++
- When Is A Destructor in C++ Called?
- Order Of Destruction In C++
- Default Destructor & User-Defined Destructor In C++
- Virtual Destructor In C++
- Pure Virtual Destructor In C++
- Key Properties Of Destructor In C++ You Must Know
- Explicit Destructor Calls In C++
- Destructor Overloading In C++
- Difference Between Normal Member Function & Destructor In C++
- Important Uses Of Destructor In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is A Constructor In C++?
- What Is A Destructor In C++?
- Difference Between Constructor And Destructor In C++
- Constructor In C++ | A Brief Explanation
- Destructor In C++ | A Brief Explanation
- Difference Between Constructor And Destructor In C++ Explained
- Order Of Calling Constructor And Destructor In C++ Classes
- Conclusion
- Frequently Asked Questions
- Test Your Skills: Quiz Time
Table of content:
- What Is Type Conversion In C++?
- What Is Type Casting In C++?
- Types Of Type Conversion In C++
- Implicit Type Conversion (Coercion) In C++
- Explicit Type Conversion (Casting) In C++
- Advantages Of Type Conversion In C++
- Disadvantages Of Type Conversion In C++
- Difference Between Type Casting & Type Conversion In C++
- Application Of Type Casting In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is A Copy Constructor In C++?
- Characteristics Of Copy Constructors In C++
- Types Of Copy Constructors In C++
- When Do We Call The Copy Constructor In C++?
- When Is A User-Defined Copy Constructor Needed In C++?
- Types Of Constructor Copies In C++
- Can We Make The Copy Constructor In C++ Private?
- Assignment Operator Vs Copy Constructor In C++
- Example Of Class Where A Copy Constructor Is Essential
- Uses Of Copy Constructors In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- Why Do You Need Object-Oriented Programming (OOP) In C++?
- OOPs Concepts In C++ With Examples
- The Class OOPs Concept In C++
- The Object OOPs Concept In C++
- The Inheritance OOPs Concept In C++
- Polymorphism OOPs Concept In C++
- Abstraction OOPs Concept In C++
- Encapsulation OOPs Concept In C++
- Other Features Of OOPs In C++
- Benefits Of OOP In C++ Over Procedural-Oriented Programming
- Disadvantages Of OOPS Concept In C++
- Why Is C++ A Partial OOP Language?
- Conclusion
- Frequently Asked Questions
Table of content:
- Introduction To Abstraction In C++
- Types Of Abstraction In C++
- What Is Data Abstraction In C++?
- Understanding Data Abstraction In C++ Using Real Life Example
- Ways Of Achieving Data Abstraction In C++
- What Is An Abstract Class?
- Advantages Of Data Abstraction In C++
- Use Cases Of Data Abstraction In C++
- Encapsulation Vs. Abstraction In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Encapsulation In C++?
- How Does Encapsulation Work In C++?
- Types Of Encapsulation In C++
- Why Do We Need Encapsulation In C++?
- Implementation Of Encapsulation In C++
- Access Specifiers & Encapsulation In C++
- Role Of Access Specifiers In Encapsulation In C++
- Member Functions & Encapsulation In C++
- Data Hiding & Encapsulation In C++
- Features Of Encapsulation In C++
- Advantages & Disadvantages Of Encapsulation In C++
- Difference Between Abstraction and Encapsulation In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Inheritance In C++?
- What Are Child And Parent Classes?
- Syntax And Structure Of Inheritance In C++
- Implementing Inheritance In C++
- Importance Of Inheritance In C++
- Types Of Inheritance In C++
- Visibility Modes Of Inheritance In C++
- Access Modifiers & Inheritance In C++
- How To Make A Private Member Inheritable?
- Member Function Overriding In Inheritance In C++
- The Diamond Problem | Inheritance In C++ & Ambiguity
- Ways To Avoid Ambiguity Inheritance In C++
- Why & When To Use Inheritance In C++?
- Advantages Of Inheritance In C++
- The Disadvantages Of Inheritance In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Hybrid Inheritance In C++?
- Importance Of Hybrid Inheritance In Object Oriented Programming
- Example Of Hybrid Inheritance In C++: Using Single and Multiple Inheritance
- Example Of Hybrid Inheritance In C++: Using Multilevel and Hierarchical Inheritance
- Real-World Applications Of Hybrid Inheritance In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Multiple Inheritance In C++?
- Examples Of Multiple Inheritance In C++
- Ambiguity Problem In Multiple Inheritance In C++
- Ambiguity Resolution In Multiple Inheritance In C++
- The Diamond Problem In Multiple Inheritance In C++
- Visibility Modes In Multiple Inheritance In C++
- Advantages & Disadvantages Of Multiple Inheritance In C++
- Multiple Inheritance Vs. Multilevel Inheritance In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Multilevel Inheritance In C++?
- Block Diagram For Multilevel Inheritance In C++
- Multilevel Inheritance In C++ Example
- Constructor & Multilevel Inheritance In C++
- Use Cases Of Multilevel Inheritance In C++
- Multiple Vs Multilevel Inheritance In C++
- Advantages & Disadvantages Of Multilevel Inheritance In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is Hierarchical Inheritance In C++?
- Example 1: Hierarchical Inheritance In C++
- Example 2: Hierarchical Inheritance In C++
- Impact of Visibility Modes In Hierarchical Inheritance In C++
- Advantages And Disadvantages Of Hierarchical Inheritance In C++
- Use Cases Of Hierarchical Inheritance In C++
- Conclusion
- Frequently Asked Questions
Table of content:
- What Are Access Specifiers In C++?
- Types Of Access Specifiers In C++
- Public Access Specifiers In C++
- Private Access Specifier In C++
- Protected Access Specifier In C++
- The Need For Access Specifiers In C++
- Combined Example For All Access Specifiers In C++
- Best Practices For Using Access Specifiers In C++
- Why Can't Private Members Be Accessed From Outside A Class?
- Conclusion
- Frequently Asked Questions
Table of content:
- What Is The Diamond Problem In C++?
- Example Of The Diamond Problem In C++
- Resolution Of The Diamond Problem In C++
- Virtual Inheritance To Resolve Diamond Problem In C++
- Scope Resolution Operator To Resolve Diamond Problem In C++
- Conclusion
- Frequently Asked Questions
Typedef In C++ | Syntax, Application & How To Use (+Code Examples)

The typedef in C++ programming is a reserved keyword used to give more descriptive and simple names to standard pre-defined data types, which may be too complex to write repeatedly. Data types represent the type of data stored in a variable or any other construct. In this blog, we will discuss the syntax, working mechanism, and uses of typedef in C++ with the help of examples.
What is Typedef in C++?
Typedef is short for 'Type-Definition' and is the reserved keyword used to create an alias name (or, in simple words, a short and meaningful name) for specific pre-defined or user-defined data types, pointers, or structures. The primary use of typedef in C++ language is to make it easy for developers to write programs by shortening complex type names. It aids in making the code cleaner while keeping the purpose served by the new datatype unchanged.
The Role & Applications of Typedef in C++
The primary role and application of typedef in C++ are to facilitate the aliasing of specific datatypes.
- It helps make the code easier to work with, as it gives a more descriptive name, which helps the programmers understand the use of the specified function or wrapper class.
- The purpose served by the new data type remains intact and unchanged.
- It reduces the complexity of code writing by facilitating the process of declaring higher-level data types.
- Typedef in C++ can be used with arrays, normal and function pointers, and other STL data structures like vectors, strings, maps, etc.
For example, say you want to create a function collect_data() that takes different inputs and returns an error message. Defining the function in the usual way-
bool collect_data(char alpha_data, vector<long> &data);
While this is the usual and correct way to declare a function, this declaration does not give the programmer an idea of the function’s exact purpose or what it will return. To avoid this situation, we use typedef declaration to make the code self-explanatory and modification easier.
typedef bool error_msg; // Using typedef to rename the bool data type
error_msg collect_data(char alpha_data, vector<long> &data); //Using error_msg instead of bool
In the example above, the renamed data type clearly indicates that the collect_data() function will return an error message.
Basic Syntax for typedef in C++
typedef <existing_data_type> <aliased_name>;
Here,
- The typedef keyword indicates that we are defining a new identifier for a data type.
- The existing type specifier/ data type that we want to rename is given by existing_data_type, and the replacement identifier is given by aliased_name
How Does typedef Work in C++?
As mentioned, typedef is a reserved keyword that helps replace complex data types with simpler and more explanatory names. Here is how typedef in C++ works:
- The typedef keyword creates an alias name for a data type while providing the same level of abstraction from both the actual data types and the modified data types.
- It allows us to create aliases that focus more on what the variable should actually mean.
- The use of destroy() and other default ways garbage collectors work makes it easy to delete unnecessary codes and optimize the use of memory space locations. In simpler terms, it makes it easy for programmers to write clean code.
- It also helps in computing the size based on data types and allocating memory space for both large storage data type variables and small storage variables.
- Using typedef helps simplify variable declarations for many compound types, including union, struct, etc.
- We can also use the typedef in C++ with structure type to shorten the declaration statements needed each time a new structure is created. This also minimizes code complexity, code readability, and the chances of any possible errors.
- Typedef allows us to shorten long names of complex data structures with easy modification.
For example, say we want to declare a map of strings to characters; then the syntax would be as follows:
Map <string, char> mp;
However, this statement does not provide enough information about the map and is tedious to write repeatedly whenever we need a new map. With the use of typedef in C++, we can redeclare the map type with a more symbolic name as follows:
typedef map <string, char> GradeByName;
The above statement clearly shows that the map represents the grades of various students. Also, if you decide to give a grading point, you just need to change the character type to float.
How to Use Typedef in C++ With Examples? (Multiple Data Types)
As mentioned, we can use typedef in C++ programs to create alias names for types. In this section, we will discuss, with the help of examples, how to implement typedef on different type specifiers.
Typedef in C++ With Pre-Defined Data Types
The most commonly used pre-defined/ built-in types in C++ are int, float, char, etc., which are rather easy to use and write repeatedly. However, some derived types are long, long long, unsigned long, etc. can be cumbersome to use.
In such cases, typedef in C++ can be used to create aliases for the actual types. And we can use that alias name to declare new variables of the respective data types. The syntax for this remains the same as mentioned above. Look at the example C++ program below to understand how this can be done.
Code Example:
#include<iostream>
using namespace std;
int main(){
//Using typedef to create an alias of the unsigned long int type
typedef unsigned long int uli;
//Creating variables of type unsigned unsigned long int using the typedef type uli
uli a1{ 54321 };
cout << "The unsigned long int value is: " << a1;
return 0;
}
Output
The unsigned long int value is: 54321
Explanation:
In the example C++ code, we first include the essential header file, i.e., <iostream>, for input-output operations and use namespace std.
- Inside the main() function, we create an alias for the unsigned long int type (which is a built-in int type), i.e., uli.
- Next, we declare a variable a1, which is of uli type and initialize it with the value 54321 using curly braces.
- Then, we use the cout command to print the same to the console.
- Lastly, the main() function returns 0, indicating successful execution without any errors.
Typedef in C++ With STL Data Structures
Suppose your code needs many new Standard Libraries (STL) data structures such as vectors, maps, strings, etc. Then, writing the expression- std::vector<int> repeatedly will be very time-consuming. It is beneficial to use the typedef in C++ in such cases, making it easier to write the code.
Syntax:
typedef <STL_data_structure_name> <alias_name>;
Here, the basic syntax remains the same, with the only difference being that the original data type has been replaced with the data structure type. Look at the example C++ code below to understand how typedef can be used with STL data structures (vector in this case).
Code Example:
#include <iostream>
#include <vector>
int main(){
// Defining a new type name for std::vector
typedef std::vector<char> vChar;
// Defining a vectore v1 containing upper & lower case characters
vChar v1{ T, y, p, e, D, e, f};
// Printing the vector elements using for loop
for (int i = 0; i < v1.size(); i++) {
std::cout << v1[i] <<" ";
}
return 0;
}
Output:
T y p e D e f
Explanation:
In the C++ code example-
- We first include header files for input-output operations and using vectors, i.e., <iostream> and <vector>, respectively.
- Then, we typedef vector creation STL notation to create an alias, i.e., an alias for std::vector<> is vChar.
- Next, we use the alias to declare and initialize a vector named v1 and then use a for loop with the cout command to display the vector elements to the console.
Typedef in C++With Array Types
Just like in STL data structures, typedef can be used with an array to create a custom data type that acts as its alias. You can easily create 2D and 3D arrays using the alias typedef.
Syntax:
typedef <array_data_type> <alias_name> [size];
Here, the deviation in the syntax is that for the original data type that we want to create an alias of, we take the data type of the elements stored in the array given by array_data_type. We also specify the size of the array/ number of elements given by size.
Code Example:
// C++ program to show the use of typedef with arrays
#include <iostream>
using namespace std;
int main() {
//Using typedef to create an alias for an integer array, i.e., arr[3]
typedef int arr[3];
//Using arr instead of int arr[] to create integer arrays
arr array1{ 1 , 2, 3};
cout << "Array Output:â;
//Using for loop to print the elements of the 1D array
for (int i = 0; i < 3; i++) {
cout << array1[i] << " ";
}
cout << "\n";
// Making a new 2D array or a square matrix of size [3 X 3]
// Matrix is an array of arrays
arr mat[3];
cout << "Matrix output:"<< "\n";
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
// Initializing the matrix
mat[i][j] = i * j;
}
}
// Outputting the matrix
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
cout << matrix[i][j] << " ";
}
cout << "\n";
}
return 0;
}
Output
Array output:
1 2 3
Matrix output:
0 0 0
0 1 2
0 2 4
Explanation:
- In the main() function, we use typedef to create an alias for the integer array type called arr with the size specified as 3 elements.
- We then initialize an array called array1 using the alias notation and print its elements by employing a for loop and cout command.
- Using the same notation, we then create a 2D array called mat[3], which will be a 3*3 matrix.
- After that, we first initialize the elements of the matrix (array of arrays) using a set of nested for loops. In that, the outer loop focuses on the row number, and the inner loop focuses on the column number.
- Next, we again use a set of nested loops and print the matrix to the console.
Typedef in C++ With Pointers
Typedef in C++ is commonly used for the faster creation of pointers. It can be used with normal pointers and function pointers as well.
Syntax:
typedef <data_type>* <alias_name>;
Here, the term <data_type>* indicates the data type of the pointer, which is given the asterisk symbol (*).
Code Example:
#include <iostream>
using namespace std;
int main(){
int p = 10;
typedef int* iptr; //Using typedef to create an alias for an integer pointer declaration, i.e., iptr
// Using iptr to create new integer pointers instead of writing int*
iptr pointer_p = &p;
cout << "p is: " << *pointer_p << "\n";
return 0;
}
Output:
p is: 10
Explanation:
- We declare and initialize an integer variable p with the value 10 inside the main() function.
- Then, we use typedef to create an alias name for the integer pointer type, i.e., iptr.
- Using this notation, we create a pointer called pointer_p and assign the address of p variable to it using the address-of operator (&).
- Next, we use the cout command to print the value stored in the variable.
Typedef in C++ With Function Pointers
Function pointers are those pointer variables that point to a function instead of a variable or a data structure. The general syntax for the declaration of a function pointer can be long. We can hence use typedef to create an alias name for it; the syntax for this is given below.
Syntax:
typedef <return_type_of_function>(*<alias_name>) (<parameter_type>,<parameter_type>,....);
For Example:
typedef int (*function_ptr)(int, int);
function_ptr new_ptr = &function;
Code Example:
#include <iostream>
using namespace std;
// Normal pointer to function
int (*func_ptr1)(int, int);
// Creating an alias for function pointer type using typedef
typedef int (*func_ptr2)(int, int);
// Function to add two numbers and return sum
int sum(int u, int v) { return u + v; }
int main(void){
func_ptr1 = ∑
// Using typedef function pointer for creating new
// function pointer "new_func"
func_ptr2 new_func_ptr = ∑
// Using normal pointer to a function
int x1 = (*func_ptr1)(3, 2);
// Using the new function pointer
int x2 = (*new_func_ptr)(2, 4);
cout << x1 << endl;
cout << x2 << endl;
}
Output
5
6
Explanation:
As mentioned in the code comments at every step, the example shows how we generally create function pointers. In comparison to using an alias name for the same, created using typedef.
Note: The “func_ptr2” can not be used as an independent function pointer. It can be used only to create new function pointers, which can only point to the function that takes two integers as its input parameters and returns an integer sum.
The Difference Between #define & Typedef in C++
Typedef |
#define |
Typedef can only be used to assign alternative/ symbolic names to types, pointers, and structures. It cannot do so with values. |
It can provide alternative or alias names for values as well. E.g., we can define 3.142 as pi, etc. |
Typedef statements are compiler-based, i.e., they are interpreted by the compiler. |
#define statements are pre-processor based, i.e., they are interpreted by the pre-processor. |
Typedef statements are to be terminated using a semicolon. (;) |
#define does not need a semicolon for termination. |
It is the actual definition of a new datatype (or pointer or structure). |
It is simply an indirect way to copy-paste the definition values. |
The typedef keyword follows the scope rule. E.g., if a new type is defined within a scope or a function, the new type is visible only until the scope is present. |
#define does not follow any scope rules. When the pre-processor encounters it, all its occurrences are replaced. |
Conclusion
Typedef stands for 'type definition', and it is the reserved keyword used to create an alias name for built-in data types. It is especially helpful in simplifying variable declarations for complex data types and compound structures, unions, etc. The syntax of typedef in C++ is:
typedef <existing_data_type> <aliased_name>;
It differs from the #define macro, as the compiler interprets typedef statements while #define statements are interpreted by the pre-processor. Also, we can use typedef in C++ to assign alias names only to data types and structures where, whereas #define can be used to provide alias names to values as well (e.g., pi for 3.142)
Frequently Asked Questions
Q. What is the data type of typedef?
There is no data type of the typedef in C++ since it is not a new data type. Instead, it is a reserved keyword used to create an alias name or alternative and more descriptive name for a predefined/ built-in data type.
Q. What is the syntax of typedef in C++?
The syntax of typedef in C++ is divided into three parts. The first is the typedef keyword itself, followed by the existing data type that you want to create an alias for and lastly the alias name. The syntax is-
typedef <existing_data_type> <aliased_name>;
Q. Difference between struct and typedef struct in C++ programs?
The keyword Struct is used to define a structure comprising many other data types as its component elements. Now, typedef struct is the same as the struct keyword type because, in C++, all declarations are implicitly typedef’ ed until hidden by some other declaration with the same name. The only difference is that typedef cannot be forward declared.
Q. How to use typedef struct in C/C++?
Typedef struct in C++/C is mostly used to make code cleaner and more readable by giving short and meaningful names to complex data structures. The syntax for declaring a typedef struct:
typedef struct <struct_data_type_name>{
/* different component of multiple data types declared */
} <alias_name>
<alias_name> <object_name>;
// object of structure is created with a need for typing struct again and again
Code Example:
#include<iostream>
using namespace std;
//declaring a typedef struct
typedef struct student{
string name;
int age;}
stud; // Note that stud is not an object, it is an alternative name for structure data type
int main(){
stud s; // s is an object of the structure
cout<<"Welcome to #Unstop"<<endl;
cout<<"Enter student name: ";
cin>>s.name;
cout<<"Enter student age: ";
cin>>s.age;
cout<<"Student name is: "<< s.name <<endl;
cout<<"Student age is: "<< s.age <<endl;
return 0;
}
Output:
Welcome to #Unstop
Enter student name: Rajesh
Enter student age: 25
Student name is: Rajesh
Student age is: 25
Q. What is typedef enum in C?
A typedef is a way of declaring an alternative name for a standard data type. An enumerated data type or enum type is a user-defined data type with an associated set of symbolic constants representing the valid values of that type.
Q. How to use typedef with a pointer?
Typedef can be used to declare a number pointer of the same type. Let’s understand this with the help of an example.
Syntax:
typedef <data_type>* <alias_name>
Code Example:
#include <iostream>
using namespace std;
int main(){
typedef double* Dp; // typedef is used to give alias name Dp to double pointer
double x = 10.5,y = 8.6, z = 12.5;
Dp px = &x , py = &y, pz = &z;
//pointers declared and assigned values using alais name
cout<< "x= " << x <<"\t *px= "<< *px <<endl;
cout<< "y= " << y <<"\t *py= "<< *py <<endl;
cout<< "z= " << z <<"\t *pz= "<< *pz <<endl;
}
Output:
x= 10.5 *px= 10.5
y= 8.6 *py= 8.6
z= 12.5 *pz= 12.5
Q. Can you use typedef in a class in C++?
Yes, we can use typedef in a class in C++, but the typedef name should be different from any class type name declared in that scope. The typedef name can be the same as the class type name only if that typedef is a synonym of the class name. A C++ class that is defined in typedef definition without being named can be given a dummy name. This class can’t have constructors or destructors.
For example:
Typedef class {
~Trees();
} Trees;
Here, Trees is an alias for an unnamed class that is defined with the use of typedef in C++ class. It is not a class type name, and therefore, we cannot define a ~Trees() destructor for this class, or else the compiler throws an error.
Test Your Skills: Quiz Time
This brings us to the end of our discussion on typedef in C++. Here are a few other articles you must read:
- Logical Operators In C++ | Use, Precedence & More (With Examples)
- C++ Type Conversion & Type Casting Demystified (With Examples)
- String Compare In C++ | Learn To Compare Strings With Examples
- C++ If-Else | All Conditional Statements Explained With Examples
- Operators In C++ | Types & Precedence Explained (With Examples)
An economics graduate with a passion for storytelling, I thrive on crafting content that blends creativity with technical insight. At Unstop, I create in-depth, SEO-driven content that simplifies complex tech topics and covers a wide array of subjects, all designed to inform, engage, and inspire our readers. My goal is to empower others to truly #BeUnstoppable through content that resonates. When I’m not writing, you’ll find me immersed in art, food, or lost in a good book—constantly drawing inspiration from the world around me.
Comments
Add commentLogin to continue reading
And access exclusive content, personalized recommendations, and career-boosting opportunities.

Subscribe
to our newsletter
Kartik Deshmukh 6 days ago
Himanshu Soni 1 month ago
Ritik Mishra 1 month ago
YASH SRIVASTAVA 1 month ago
Sakshi Sinha 1 month ago
Sanchit Dhale 1 month ago